
1 r

CarnegieMellon
Software Engineering Institute

Theory and Practice of
Enterprise JavaBean™
Portability

Santiago Cornelia Dorda
John Robert
Robert Seacord

June 1999

COTS-Based Systems Initiative

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Technical Note
CMU/SEI-99-TN-005

19990702 009

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000. ■"...-'•■ . :■;■■.:

Technical Note
CMU/SEI-99-TN-005

Carnegie Mellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

Theory and Practice of
Enterprise JavaBean™
Portability

Santiago Cornelia Dorda
John Robert
Robert Seacord

June 1999

COTS-Based Systems Initiative

fynC QUALITY INSPECTED 4^

Unlimited distribution subject to the copyright

The Software Engineering institute is a federally funded research and development center sponsored by the
U.S. Department of Defense.

Copyright 1999 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350 Earl L.
Core Road; PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free in the U.S. 1-
800-547-8306 / FAX: (304) 284-9001 World Wide Web: http://www.asset.com / e-mail: sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For
information on ordering, please contact NTIS directly: National Technical Information Service, U.S.
Department of Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides
access to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential
contractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 /
Ft. Belvoir, VA 22060-6218 / Phone: (703) 767-8274 or toll-free in the U.S.: 1-800 225-3842.

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discnminate in admission, employment, or
administration of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act
of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or
executive orders.

In addition Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion,
creed ancestry belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the
judgment of the Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue,
excludes openly gay, lesbian and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes
at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Camegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-6684 or the Vice President for Enrollment, Camegie Mellon University, 5000 Forbes Avenue,
Pittsburgh! PA 15213, telephone (412) 268-2056.

Obtain general information about Camegie Mellon University by calling (412)-268-2000.

Contents

Abstract vii

1 Introduction 1

2 Background 5

3 Bean Portability 7

4 Deployment Portability 10

5 Summary and Conclusions 13

References 14

CMU/SEI-99-TN-005

CMU/SEI-99-TN-005

List of Figures

Figure 1. Development Cycle in EJB

CMU/SEI-99-TN-005

jv CMU/SEI-99-TN-005

List of Examples

Example 1. Middleware Effect on Bean Lookup 8
Example 2. JNDI Context Initialization in

WebLogic 9
Example 3. WebLogic's Mapping Description 11
Example 4. Ejipt's Mapping Description 11
Example 5. Declaritive Definition of

a Relation in PowerTier 12

CMU/SEI-99-TN-005

Vj CMU/SEI-99-TN-005

Abstract

The modern enterprise information system (EIS) requires the integration of numerous
technologies such as distribution, transactions, data management, security, and naming. Off-
the-shelf architectures such as Enterprise JavaBeans™ (EJB) provide a pre-integrated
solution that supports the quick development and deployment of information systems.
Unfortunately, the EJB specification is extremely porous, leading to portability problems. In
addition, the line between vendor extensions and EJB standard functionality is blurred,
making it difficult for bean providers to know what functionality can be depended upon
across server implementations. This paper presents sources of portability problems in EJB
and illustrates them with some real examples. We also present our opinion about the direction
the EJB specification should take to enable effective reuse of Enterprise Beans™ between
servers.

CMU/SEI-99-TN-005 vn

vijj CMU/SEI-99-TN-005

1 Introduction

Enterprise JavaBeans™ (EJB) is a specification for a component model that promises to
simplify the development of multi-tier application systems capable of supporting high-
volume business transactions [Spitzer 98]. EJB is not an implementation, but a specification
owned by JavaSoft. JavaSoft is acting in the role of a standards organization to expedite the

evolution of EJB technology.

Prior to the development of the Enterprise JavaBeans specification in March of 1998, the
application server market was segregated into proprietary camps. The EJB specification
offered a common model for Java application servers bringing coherence to an otherwise

chaotic application server market.

EJB encourages innovation by allowing multiple vendors to develop different
implementations of the specification. Most vendors add unique features to core application
server functionality to differentiate themselves from their competitors. However, the EJB
specification maintains that software developed in an EJB-compliant server1 can run in
another EJB-compliant server seamlessly and without adaptation. In this paper, we examine
Enterprise Bean portability among EJB-compliant servers and identify practical obstacles to

portability.

To evaluate EJB portability, we created a small EJB test application or model problem. This
model problem uses many EJB features, including entity and session beans, container-
managed persistence, and container-managed transaction demarcation. Using this model
problem, we tested single and concurrent clients, different security settings and transaction
isolation levels and different naming service implementations. Four EJB platforms were
evaluated: WebSphere 2.0 from IBM, WebLogic 3.1.6 fromBEA, Ejipt 1.0.2 from Valto, and
PowerTier™ from Persistence. However, the specific EJB servers evaluated is not critical as

the results of this work can be extrapolated to any EJB platform.

All four EJB servers evaluated claim to be EJB 1.0 compliant—no EJB 1.1 compliant servers
were available as of May 1999. The 1.1 release of the specification has made progress in

addressing portability issues by clarifying some confusing aspects of the EJB 1.0
specification. However, it is far from a definitive solution and most of our conclusions are

The EJB specification distinguishes between functionality implemented in an EJB server and in an
EJB container. To simplify the discussion, we have not made this distinction in this paper because
EJB vendors currently bundle both components together as inseparable parts of their
implementations.

CMU/SEI-99-TN-005 1

valid for EJB 1.1 compliant servers. We identify portability problems present in the EJB 1.0
specification and state when these problems have been corrected by the 1.1 specification.

Before presenting the results of these experiments, we briefly discuss some EJB
fundamentals and the importance of portability in EJB. This paper is not an introduction to
EJB; basic knowledge of the EJB framework and functionality is assumed. For those that are

not familiar with EJB please see [Thomas 98, Johnson 98].

1.1 Enterprise JavaBeans

EJB has emerged from the now critical intersection of the Internet and business enterprises.
Business enterprises have realized that the Web provides a means to share information and

offer services to customers (Internet), business partners (extranets), or even their own
employees (intranets). EJB provides several advantages for building Web-based enterprise

systems.

The "Write Once, Run Anywhere™" capability makes Java uniquely qualified for building
enterprise systems in the multi-platform environment of enterprises. Until now, Java has
been primarily used for client-side development because server-side business logic requires
more complex services such as transactions, scalability, database integration, naming, and
security services. These requirements have been historically addressed using a mix of
"traditional" technologies including relational databases, transaction monitors, and naming
servers. However, difficulties often arise in the integration of technologies from different
vendors that can only be addressed by the vendors concerned. When this occurs, development
is effectively held hostage to the whims of vendor priorities, a state of affairs inhibitive to the
use of these technologies in enterprise applications [Seacord 99]. In contrast, EJB vendors
provide a pre-integrated solution, effectively removing integration issues.

An important benefit of EJB is the component-based approach to application development.
The challenge of "better, faster, cheaper" software solutions is driving component-based
software engineering (CBSE) to the forefront of EIS development solutions. This building
block development process can help organizations reduce software development time by
enabling reuse of custom components and the purchase of pre-built third party components.
EJB provides a component framework where software components are combined to create

complete systems.

Component-based development differs in some aspects from custom development. One
difference is that in custom development, all development tasks are performed directly by, or
under the direction of, a single organization. In contrast, in a component-based development
effort, different organizations can perform different roles in the development.

The Enterprise JavaBeans architecture defines distinct roles in the application development
and deployment workflow as shown in Figure 1. The bean provider is an application domain
expert that develops reusable Enterprise Beans. An application assembler integrates beans

CMU/SEI-99-TN-005

from multiple bean providers to compose a complete application, developing custom beans
when necessary. An EJB deployer adapts and customizes EJB applications to run in a
specific environment. Enterprise Beans output from each step of the development process
become inputs to the next step.

Application
Assembler

EJB
Deployer

EJB Server
Provider &

Container Provider

Figure 1. Development Cycle in EJB

As each development role may be performed by a different party using a different EJB server,
every step in the development process can be a porting task between different servers. When
all roles are performed within a single organization that has selected a common EJB server,
portability is a lesser concern.

1.2 Importance of Portability in EJB

The objective of portability in EJB is to allow an Enterprise Bean to be used across EJB
servers. The Sun EJB specification [Sun 98a] defines the following goal:

Enterprise JavaBeans applications will follow the "write-once, run anywhere"
philosophy of the Java programming language. An Enterprise Bean can be
developed once, and then deployed on multiple platforms without recompilation
or source code modification.

This goal conflicts with other objectives such as compatibility with existing application
servers, differentiation across multiple implementations from different vendors and
encouraging continued innovation. Portability of Enterprise Beans between competing server
implementations is not a precondition for success, as demonstrated by the success of
technologies such as SQL, but a basic level of portability is desirable and beneficial for the

EJB community.

CMU/SEI-99-TN-005

The importance of portability depends greatly upon business objectives. Portability has

increased importance for

• component vendors that want a broad-based market for their components

• application assemblers that want to reuse pre-built components

• EJB server providers that want to expand the number of third-party components available
for their platforms

In contrast, portability may be less important for

• enterprises that have made a strategic decision to use a particular EJB server to take
advantage of proprietary features

• organizations that need to custom develop beans to meet non-negotiable requirements or
to differentiate their application

• application server providers that want to offer non-standard extensions as a business
strategy

Please note that reuse is not dependent on portability—Enterprise Beans can be reused in
other applications implemented on the same application server without any concern for
portability. However, lack of portability of Enterprise Beans across EJB servers fragments
the component market, restricting the number of Enterprise Beans available for a given

application server.

CMU/SEI-99-TN-005

2 Background

The Java 2 platform and the Java Virtual Machine (JVM), when correctly implemented,
provide an ideal level of portability. Standardized application program interfaces (APIs) in
the Java 2 platform provide source code portability, while standardization of the JVM
provides for portability of compiled classes.

Although EJB is implemented in Java, this degree of portability is no longer pragmatic. EJB
needs to provide for product differentiation as well as for portability. Differences in
capabilities arise form the following market necessities, the first two of which are listed as
goals in the EJB specification:

1. The Enterprise JavaBeans architecture needs to be compatible with existing server
platforms.

2. Vendors need to be able to extend their existing products to support Enterprise
JavaBeans.

3. Vendors need be able to differentiate their products by providing implementation-
specific enhancements.

These market necessities arise from the significantly different market positions enjoyed by
EJB and Java. The initial success of Java was based on the ability to allow users of the World
Wide Web to access applications from anywhere on the Internet. Having established a
dominant position early, competing vendors did not feel that they could successfully
challenge Java in the marketplace. Sun supported this position by licensing Java technology
to competitors, allowing them to collaborate in making Java a success rather than forcing
them to compete.

Enterprise JavaBeans can be viewed as a push to galvanize support for Java on the server,
and move Java beyond the applet paradigm. However, a large number of vendors
collaborating with Sun in making Java successful have a vested interest in application
servers. For the Enterprise JavaBeans specification to be a success, JavaSoft needed to
establish consensus between 19 partners, including IBM, BEA, Oracle, GemStone, and
Netscape, each of which contributed to the Enterprise JavaBeans specification.

The EJB specification is actually more of a classification scheme than a traditional
specification. Common elements in application servers were identified and gaping holes
plugged with new interfaces. As a result, the specification is intentionally vague in areas
where existing implementations took conflicting approaches, and no short-term resolution
was possible between competing vendors. In some respects, the EJB standardization process
more closely resembles the CORBA standardization process managed by the Object

CMU/SEI-99-TN-005 5

Management Group (OMG). Sun is acting as a central authority to bring about consensus in
application server domain, much the same way that the OMG brought about consensus in the

area of distributed object technology.

EJB standardization is a multiyear process geared towards bringing application server
vendors closer together by developing an increasingly detailed specification, while allowing
continued vendor innovations to grow and extend the specification. It is not expected or
necessary that absolute portability be achieved at the start. The problem is that the existing
specification makes exaggerated claims, leading to heightened expectations and initial

disappointments.

As a result of the market necessities just described, the EJB specification is quite porous and
many of the vendors that claim compliance to the specification provide significantly different

capabilities in their EJB containers or servers. Of course, not every difference between
servers is a threat for portability. Vendors can make enhancements to the server that do not

impact portability—for example

• smart caching and pooling of objects and resources to improve performance—e.g,
database connection pooling

• improved development and management tools

• virtual machines optimizations to run server-side code

In the remainder of this paper, we present some portability problems that we encountered in
porting our model problem. We have not attempted to provide a comprehensive list of every
difficulty that may be encountered when deploying an Enterprise Bean in a different server.
This paper instead attempts to illustrate the kinds of problems that a developer faces when

making these migrations.

CMU/SEI-99-TN-005

3 Bean Portability

To provide portability for the source code of an Enterprise Bean, EJB relies on API
specifications to

• homogenize access to services or tools at source code level

• define a common interface to access resources and functionality

EJB defines its own API for server/container interfaces to Enterprise Beans. EJB also relies
on an alphabet soup of high level APIs including JTS, JDBC, RMI, JIDL, and JNDI. These
APIs, along with additional APIs such as JMS and the Java servlet API, are not part of EJB,
but rather form the Java Platform for the Enterprise (JPE).

Surprisingly, basic services of JPE in different servers do not present homogeneous
interfaces. For example, the EJB 1.0 Specification does not specify which JDK version
should be used [IONA 98]. Most EJB server vendors support JDKl.l.x and some support
Java 2, and all claim to be EJB 1.0 compliant. JDK 1.1 and Java 2 have multiple
incompatibilities with significant incompatibilities in APIs. The EJB 1.1 specification states
that to be portable an Enterprise Bean must be careful to use only JDK 1.1 APIs. This does
not address how semantic differences, for example, in the Java remote method protocol
(JRMP) are addressed. Of the four EJB servers we evaluated, two supported JDK 1.1
(WebSphere, WebLogic) and two supported Java 2 (Ejipt, PowerTier).

Even using the same JDK release, servers can have API incompatibilities. For example, the
RMI API can use different middleware protocols, like the native Java Remote Method
Protocol (JRMP) or OMG standard inter-ORB interoperability protocol (BOP).
Unfortunately, there is no middleware transparency in RMI, because different capabilities in
JJOP and JRMP make it difficult to hide the underlying protocol from RMI users. Example 1
illustrates these differences with two examples of source code, one from a Valto client using
native RMI and another from a WebSphere client using HOP. Each client is attempting to get
an instance of a bean home interface from the Java Naming and Directory Interface (JNDI)
naming service.

CMU/SEI-99-TN-005

Valto:

Object object = nrylnitialctx.loo)oip{ "EchoServiceHome");

EchoServiceHome myEchoServiceHome = (EchoServiceHome) object;

Websphere:

Object object = mylnitialctx.lookup{"EchoServiceHome");

EchoServiceHome myEchoServiceHome =
EchoServiceHomeHelper.narrow{(org.omg.CORBA.Object) object)

Getting the
reference

Downcastingio ;
the proper Class

In WebSphere
a helper class is needed
to make the downcast

Example 1. Middleware Effect on Bean Lookup

While these interface or syntactic problems can be found at compilation time and are
relatively easy to resolve, this specific example is alarming because it affects the portability

of the client to run with the same bean in different EJB servers. This fact is clearly in
contradiction with the goals of EJB, as presented in the following statement from the EJB

specification:

A client's view of an EJB object is the same, irrespective of the implementation of
the Enterprise Bean and its container. This ensures that a client application is
portable across all container implementations in which the Enterprise Bean

might be deployed.

This middleware transparency issue has been addressed in the 1.1 release of the EJB
specification. This release states that the type narrowing must be performed using the narrow
method of the portable remote object. In the EJB 1.0 specification this practice was only

recommended.

A more difficult problem to find occurs when two implementations of a service share the
same syntax but have different semantics. Semantic differences are harder to find, because
they cannot be detected at compile time and they usually produce cryptic errors at runtime.

For example, the JNDI API defines an initial context factory interface containing a method
that returns the initial context. This method accepts a single parameter: a hash-table of
property-value pairs. This table of property-value pairs represents the environment in which
the naming service is accessed, including requirements for security and level of service. This
construction is extremely flexible: any set of properties can be passed to the factory. The
JNDI specification defines a minimal set of properties, but enables vendors to extend this set

with properties specific to their products.

In Example 2, we create an initial context that uses another remote naming service as
delegate of service. This example can be compiled and deployed in any EJB compliant
server, but produces a run time error in any server not using WebLogic's implementation of

CMU/SEI-99-TN-005

the naming service. That is because the delegate environment property is specific to

WebLogic'sJNDI.2

Creating the environment of
the remote service provider

Hashtable delegateEnv = new Hashtable();
delegateEnv.put(...); //properties of delegated environment

Hashtable env = new Hashtable0;
env.put(TengahContext.DELEGATE_ENVIRONMENT, delegateEnv) ;
env.put(...); // rest of properties on the local environment

A Adding the delegate
provider to the
local provider

Context ctx = new InitialContext(env);

>^
Getting ehe initial

context

Example 2. JNDI Context Initialization in WebLogic

Almost every EJB server includes proprietary libraries. Some of these APIs make available
functionality that is not included (or not yet included) by the JPE—such as a time service or
extensible markup language (XML) manipulation. If the EJB developer needs any of these
services, it is difficult to avoid getting locked into a proprietary solution. For example, the
event service for JPE has not yet been released by Sun. Users that need reliable asynchronous
communication have to employ proprietary versions of this service, or build their own event

service with Java (a non-trivial problem).

In JNDI 1.2, now in beta release, a new mechanism for using resource files has been added that
allows applications to provide configuration dependent properties. This will allow these properties
to be established at deployment time, partially addressing the portability problem.

CMU/SEI-99-TN-005

4 Deployment Portability

Deployment descriptors are used to establish the runtime service properties for an Enterprise
Bean. These properties tell the EJB container how to manage and control the Enterprise Bean
[Thomas 98]. Deployment properties are attributes of the server that can be used as required,
and vary with the capabilities of the server. Servers that support fine control over object
pools, for example, have a property for the number of instances of a bean in the pool, while

servers that provide course control do not.

4.1 Vendor-Specific Notation

The most readily apparent fact when porting a deployment descriptor to a different server is
the differences in notations. As of the 1.0 release of the EJB specification, syntax of the
deployment descriptor is vendor dependent. JavaSoft is aware of this problem and has
standardized deployment description notation using XML in the 1.1 release of the EJB
specification [Sun 99].

4.2 Server Functionality
There is a basic set of deployment properties defined by the standard that every vendor must
support, including the name of the home and remote interface in JNDI, the access control list
for the Bean and the container-managed field. In EJB 1.0, these properties are described in
three classes defined by the specification: the deployment descriptor, entity descriptor, and
session descriptor. The EJB 1.1 specification deprecates these classes, and substitutes the
serialized deployment descriptor for an XML file. It also adds more standard properties and
dictates the properties that must be defined by each role. However, it is difficult, if not
impossible, to limit a development effort to the use of only these properties. In most
applications, it is necessary to use proprietary properties to deploy an Enterprise Bean.

Differences in EJB server capabilities are mirrored in the deployment attributes. When
migrating an Enterprise Bean to a new EJB server, deployers may find that the new server's
deployment descriptor does not support properties upon which an Enterprise Bean is reliant.
Sometimes the only solution is to transfer this functionality to the business logic of the
Enterprise Bean. This is an unpleasant task—assuming the deployer has access to the
Enterprise Bean's source code and can make the changes at all.

We believe the standardized core set of properties must be extended to enable the

development of applications without reliance on proprietary properties. Of course,

specialized needs or specific niche markets could make use of these extensions.

10 CMU/SEI-99-TN-005

The extension of the standard set of properties is a difficult problem because of the varied
capabilities of EJB servers. For example, the mapping between EJB model and persistent
store may be completely different if the persistent store is a relational database or an object
oriented database. It may be necessary to restrict the specification to provide actual
portability across a more narrow range of technologies than to provide limited portability
across a broad range of technologies.

Object Persistence

One area where differences between server implementations are substantial is the mapping
between the EJB object model and the underlying data store. Most EJB servers use a
relational database as a persistent repository, while others may use either an object repository
or flat file. With container-managed Beans, this mapping must be described in the
deployment descriptor. Current EJB server implementations have different approaches for
providing this mapping. For example, in the WebLogic server an entity bean is always
mapped to a row in a table. Every state data variable in the Enterprise Bean is mapped to a
specific column in a table in the relational database as shown in Example 3.

persistentStoreClassName
(jdbc \y

tableName ejbSuffix
dblsShared false
poolName ejbPool
(attributeMap

suffixia suffixid-
suffix suffix

Name of table
in relational store

Columns
in table

) ;s\-
Attributes

in E.B.

Example 3. WebLogic's Mapping Description

Ejipt's relational mapping is more complex. EJB deployers write a set of SQL statements to
transfer data. This solution, shown in Example 4, enables the deployer to specify more
intricate mappings, but also requires greater development effort.

SQL statement for creating a
new instance of the Bean

ejipt.postCreateSQL=INSERT INTO ejbprefix (prefix, prefixid) VALUES (?, ?)
ej ipt.postCreateSQL.source=test
ejipt.postCreateSQL.params=prefix:IN, prefixid:In

Example 4. Ejipt's Mapping Description

Mappings that can be easily described in one EJB server's deployment descriptor may be
impossible to describe in another. If these complex mappings are used, and the Enterprise

CMU/SEI-99-TN-005 11

Bean is migrated to a server that does not support them, the bean must be converted from
container to bean managed.

Container-Managed Relations

Another example of deployment descriptor incompatibilities can be found in container-
managed relations. In most enterprise information systems, business objects are related. For
example, customers have accounts and providers offer products. The EJB specification does
not describe how to express relations between container-managed entity beans. Some EJB
servers allow these relations to be expressed declaratively (i.e., in the deployment descriptor),
while others do not. Of the evaluated servers, only PowerTier™ for EJB supports relations
managed in the deployment descriptor. WebSphere claims support for relations in a future
release and WebLogic provides support through TOPLink™, a plug-in from the Object
People. Example 5 shows a segment of the deployment illustrating the specification of a
relation in a deployment descriptor.

"left-side" of
the relation

"right-side" of ■
the relation ;:;!

Relationship {
" Source {

ClassName {
osc.Echo

}

Cardinality {
Cardinality.k_oneOne

}
)

' Destination {
ClassName {

osc.Suffix
}

Cardinality {
Cardinality.k_zeroMany

Example 5. Declaritive Definition of a Relation in PowerTier

Finder Methods
A finder method is a service of the home interface used to locate entity beans. Depending on
the EJB Server, a finder method may be defined in source code or declaratively in the
deployment descriptor. For example, WebLogic defines a restricted language that permits
declaration in the deployment descriptor of simple queries. In contrast, WebSphere requires
developers to create Java helper classes with methods that return the SQL sentences of the
finder. The WebSphere solution is more flexible, but must be implemented in source code,
including detailed representations of the Enterprise Bean in the database. This defeats the
principal benefit of container-managed persistence—allowing the Enterprise Bean source
code to be independent of the underlying data source.

12 CMU/SEI-99-TN-005

5 Summary and Conclusions

Pourousness in the EJB specification is a source of portability problems in Enterprise
JavaBeans. Sun has recognized this problem and is taking steps to address it. At the end of

1998 Sun announced a roadmap [Sun 98b] consisting of a three-phased plan in which

increased portability is a major consideration:

1. Phase one of this roadmap will provide enhancements to the specification to allow
developers to write Enterprise Beans that can easily install and run anywhere.3

2. Enhancements made to the specification in phase two will provide vendors with a
universal way to connect to existing systems without sacrificing portability.

3. Phase three will take this a step further by making the mapping process between
enterprise class systems and Enterprise JavaBeans seamless and automatic. Developers
will be able to create enterprise-class apps without concern for the underlying enterprise
infrastructure. A developer could write a checking account bean, for instance, without
regard for the underlying database, transaction server, or directory server.

An underlying source of portability problems in EJB is the conflict between the needs of a
multi-vendor/multi-niche market and the necessity of an acceptable level of portability.
Vendors should be free to provide enhanced features, but there should be a well-defined
minimal common set of capabilities. This standard EJB core must comprise both source code
interfaces and deployment descriptor's properties, and be complete enough to implement
most enterprise applications. Without this common core functionality, the establishment of a
component market in Enterprise Beans is seriously jeopardized. Currently, the line between
vendor extensions and EJB standard functionality is blurred, making it difficult for bean
providers to know what functionality can be depended upon across server implementations.
Moreover, the capabilities standardized by EJB are often insufficient to develop commercial

applications without using proprietary extensions.

3 A public draft of the EJB 1.1 specification was released on May 11, 1999. However, most EJB
products will not be EJB 1.1. compliant until late 1999 or early 2000.

CMU/SEI-99-TN-005 13

References

lona 98 IONA Technologies.® "Outstanding Issues" [online]. Dublin, Ireland:
IONA Technologies. Available WWW:
<URL: http://www.ejbhome.com/holes.htm> 1998.

Johnson 98 Johnson, Mark. "A Beginner's Guide to Enterprise JavaBeans" [online].
Java World 3,10 (October 1998). Available WWW:
<URL: http://www.javaworld.com/javaworld/jw-10-1998/

jw-10-beans.html>.

Seacord 99 Seacord, Robert C; Wallnau, Kurt; Robert, John; Cornelia Dorda, Santiago;
& Hissam, Scott A. Custom vs. Off-The-Shelf Architecture (CMU/SEI-99-
TN-004). Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, May 1999.

Spitzer 98 Spitzer, Tom. "Component Assembler." DBMS Online. August 1998.
Available WWW: <URL: http://www.dbmsmag.com/9808dl8.html>.

Sun 98a Sun Microsystems.® Enterprise JavaBeans™ 1.0 [online]. Palo Alto, Ca.:
Sun Microsystems. Available FTP:
<URL: ftp://ftp.javasoft.com/docs/ejb/ejb.10.pdf>, 1998.

Sun 98b Sun Microsystems. "Sun Delivers Enterprise JavaBeans™ Technology
Roadmap" [online]. Palo Alto, Ca.: Sun Microsystems. Available WWW:
<URL: http://java.sun.com/pr/1998/12/pr981208-05.html>, December 8,
1998.

Sun 99 Sun Microsystems. Enterprise JavaBeans™ 1.1 [online]. Palo Alto, Ca.: Sun

Microsystems. Available FTP:
<URL: http://www.javasoft.com/products/ejb/docs.html>, 1999.

Thomas 98 Thomas, Anne. "Enterprise JavaBeans ™ Technology. Server Component
Model for the Java Platform" [online]. Palo Alto, Ca.: Sun Microsystems.

Available WWW:
<URL: http://java.sun.com/products/ejb/white_paper.html>, 1998.

14 CMU/SEI-99-TN-005

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

June 1999

TITLE AND SUBTITLE

Theory and Practice of Enterprise JavaBean Portability

AUTHOR(S)

Santiago Cornelia Dorda, John Robert, Robert Seacord

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731 -2116

11. SUPPLEMENTARY NOTES

REPORT TYPE AND DATES
COVERED

Final
FUNDING NUMBERS

C —F19628-95-C-0003

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-99-TN-005

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
13. ABSTRACT (MAXIMUM 200 WORDS)

12.B DISTRIBUTION CODE

The modern enterprise information system (EIS) requires the integration of numerous technologies such as
distribution, transactions, data management, security, and naming. Off-the-shelf architectures such as Enterprise
JavaBeans™ (EJB) provide a pre-integrated solution that supports the quick development and deployment of
information systems. Unfortunately, the EJB specification is extremely porous, leading to portability problems. In
addition, the line between vendor extensions and EJB standard functionality is blurred, making it difficult for bean
providers to know what functionality can be depended upon across server implementations. This paper presents
sources of portability problems in EJB and illustrates them with some real examples. We also present our opinion
about the direction the EJB specification should take to enable effective reuse of Enterprise Beans™ between
servers.

14. SUBJECT TERMS

component-based software engineering (CBSE), Enterprise JavaBeans (EJB),
information system, Java, off-the-shelf architecture, portability, reuse

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED
NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

14 pp.

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-1
Prescribed by ANSI Std 239-18
298-102

